
会员
知识图谱:认知智能理论与实战
更新时间:2024-01-25 17:33:23 最新章节:封底
书籍简介
知识图谱作为认知智能的核心技术正蓬勃发展。本书系统全面地介绍了知识图谱的核心技术,既有宏观整体的技术体系,也有关键技术和算法细节,内容包括:知识图谱模式设计的方法论——六韬法;知识图谱构建中的实体抽取和关系抽取;知识存储中的属性图模型及图数据库,重点介绍了JanusGraph分布式图数据库;知识计算中的图论基础,以及中心性、社区检测等经典图计算算法;知识推理中的逻辑推理、几何变换推理和深度学习推理,及其编程实例。最后,本书以金融、医疗和智能制造三大行业的应用场景为例,梳理了知识图谱的应用价值和应用程序形态。
上架时间:2022-05-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
王文广
同类热门书
最新上架
- 会员本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。计算机19.1万字
- 会员AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字
- 会员本书共分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。计算机0字
- 会员本书共16章,内容包括人工智能、OpenAI、ChatGPT的概述及其操作技巧。生动展示了ChatGPT在教育与学术、商业管理、新媒体、办公、求职等12个领域的实际运用,同时探讨了ChatGPT当前面临的挑战以及大模型的未来发展方向。计算机12万字
- 会员本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字
- 会员在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字
- 会员本书通过实践案例操作,讲述AI绘画的生成步骤,展现了AI绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI绘画的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及Prompt、风格、技术细节、多模态交互、AIGC等一系列讲解。计算机5.5万字
同类书籍最近更新
- 会员本书从一个完全不了解机器学习的程序员的视角出发,通过一系列生动有趣的具体应用实例,运用诙谐的语言以循序渐进的方式比较系统地介绍机器学习的本质思想、基本理论和重要算法,比较细致地剖析线性模型、感知机模型、浅层神经网络、深度神经网络的设计原理与编程方法,引导读者亲自动手从零开始打造和完善机器学习的底层代码,逐步消除对机器学习算法原理的认知盲点,让广大初学者能够较为轻松地掌握机器学习和深度学习的基本理论人工智能15.6万字
- 会员机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9人工智能12.3万字
- 会员本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何人工智能13.3万字