神经网络与深度学习在线阅读
会员

神经网络与深度学习

吴岸城
开会员,本书免费读 >

计算机网络人工智能9.4万字

更新时间:2019-01-04 14:25:41 最新章节:术语

立即阅读
加书架
下载
听书

书籍简介

本书结合日常生活中的寻常小事,生动形象地阐述了神经网络与深度学习的基本概念、原理和实践,案例丰富,深入浅出。对于正在进入人工智能时代的我们,这些内容无疑可以帮助我们更好地理解人工智能的原理,丰富我们对人类自身的认识,并启发我们对人机智能之争更深一层的思考与探索。
上架时间:2016-06-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

吴岸城
主页

同类热门书

最新上架

  • 会员
    本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书
    魏承东计算机18.2万字
  • 自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代?有人说,大规模预训练已经
    刘云浩计算机11.3万字
  • 会员
    AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。
    徐英瑾计算机17.8万字
  • 会员
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容
    赵卫东 董亮编著计算机30.2万字
  • 会员
    本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。
    段小手计算机18万字
  • 会员
    本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。
    量子学派@ChatGPT计算机8.6万字
  • 会员
    本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。
    王士国 翟宇 虞振飞 方良华计算机17.5万字
  • 会员
    本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。
    刘丙润编著计算机10.1万字
  • 会员
    本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络
    叶翰嘉 詹德川计算机19.3万字

同类书籍最近更新

  • 会员
    机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9
    宋亚统人工智能12.3万字
  • 套装包括《未来呼啸而来》、《AI3.0》、《人工智能的未来》、《人工智能简史》、《如何创造可信的AI》、《智能学习的未来》、《与机器人共舞》、《第四次革命》共八本。
    (加)彼得·戴曼迪斯 史蒂芬·科特勒 (美)梅拉妮·米歇尔人工智能145万字
  • 会员
    本书针对产业界在智能化过程中普遍面临的数据不足问题,详细地阐述了联邦学习如何帮助企业引入更多数据、提升机器学习模型效果。互联网数据一般分布在不同的位置,受隐私保护法规限制不能共享,形成了“数据孤岛”。联邦学习像“数据孤岛”之间的特殊桥梁,通过传输变换后的临时变量,既能实现模型效果提升,又能确保隐私信息的安全。本书介绍了联邦学习技术的原理和实战经验,主要内容包括隐私保护、机器学习等基础知识,联邦求交
    彭南博 王虎等人工智能18.5万字
  • 会员
    近年,人工智能热潮席卷而来。本书以图解的方式网罗了人工智能开发必备的基础知识,内容涉及机器学习、深度学习、强化学习、图像和语音的模式识别、自然语言处理、分布式计算等热门技术。全书以图配文,深入浅出,是一本兼顾理论和技术的人工智能入门教材。旨在帮助读者建立对人工智能技术的整体印象,为今后深入探索该领域打下基础。另外,书中设有专栏和“小贴士”,介绍了相关术语的背景知识,可帮助读者扩充知识面,进一步理解
    (日)多田智史人工智能10.4万字
  • 会员
    本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何
    (印度)阿南德·德什潘德 马尼什·库马人工智能13.3万字
  • 会员
    机器学习包括有监督学习、无监督学习和半监督学习,而具体的问题又大致可以分两类:分类问题和回归问题。本书分为8章,使用Python第三方工具库深入讲解机器学习极大重要算法的实现,内容包括机器学习概述、贝叶斯分类、决策树、集成学习、支持向量机、神经网络、卷积神经网络、卷积神经网络分割图片实战。
    宋立桓人工智能8.6万字